Abstract
AbstractHigh isolation between massive MIMO antenna elements is one of the important parameters that improves antenna performance, especially for 5G communication applications. In this study, we propose a design to improve isolation between elements to enhance the antenna performance. The proposed solution to improve the performance of massive MIMO antennas is to use a combination of dielectric resonator, electromagnetic bandgap (EBG) and defected ground structure (DGS) techniques at the frequency band 3.5 GHz as the 5G frequency band under 6 GHz. The material used is FR-4 which has a dielectric constant ($${\varepsilon }_{r}$$
ε
r
) of 4.3. Simulation results and measurements between antenna elements show an improvement in mutual coupling, widening the bandwidth and increasing the gain of the antenna. The proposed design using the dielectric resonator antenna (DRA) by MIMO 8 × 8 16 port—64 elements and the addition of EBG and DGS structures on the ground plane—has shown to suppress mutual coupling parameter lower than without using DRA-EBG-DGS design by 15 dB, increase bandwidth to 246 MHz, increase gain to 24.7 dB and improve the overall envelope correlation coefficient (ECC) parameter.
Funder
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献