Joint spectral efficiency optimization of uplink and downlink for massive MIMO-enabled wireless energy harvesting systems

Author:

Sun Wenfeng,Liu ChenORCID,Qian Mujun,Chen Yan,Xu Shu

Abstract

AbstractThis paper investigated the spectral efficiency (SE) in massive multiple-input multiple-output systems, where all terminals have no fixed power supply and thus need to replenish energy via the received signals from the base station. The hybrid wireless energy harvesting (EH) protocol is applied for each terminal, which can switch to either existing time-switching (TS) protocol or power-splitting (PS) protocol. Based on the hybrid wireless EH protocol, a general system model is developed, which can switch to either only uplink data transmission or only downlink data transmission. As a result, a general analytical framework is formulated. Then, closed-form lower bound expressions on SE for each terminal are obtained on the uplink and downlink, respectively. According to these expressions, the joint SE of uplink and downlink maximization problem is designed with some practical constraints. As the designed optimization problem is non-linear and non-convex, it is hard to solve directly. To provide a solution, an iteration algorithm is proposed by utilizing one-dimensional search technique and successive approximation method based on geometric program. Additionally, the convergence and complexity of the proposed algorithm are discussed as well. Finally, the feasibility of the proposed algorithm is analyzed by simulations. Numerical results manifest that the proposed algorithm can provide good SE by optimizing relevant system parameters, and the system model can help to discuss the TS, PS or hybrid protocol for only uplink data transmission, only downlink data transmission or joint data transmission of uplink and downlink in the considered system.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3