Classified 3D mapping and deep learning-aided signal power estimation architecture for the deployment of wireless communication systems

Author:

Egi YunusORCID,Eyceyurt Engin

Abstract

AbstractThe traditional wireless communication systems deployment models require expensive and time-consuming procedures, including environment selection (rural, urban, and suburban), drive test data collection, and analysis of the raw data. These procedures mainly utilize stochastic and deterministic approaches for signal strength prediction to locate the optimum cellular tower (eNodeB) position for 4G and 5G systems. Since environment selection is limited by urban, suburban, and rural areas, they do not cover complex macro and micro variations, especially buildings and tree canopies having a higher impact on signal fading due to scattering and absorption. Therefore, they usually end up with high prediction errors. This article proposes an efficient architecture for the deployment of communication systems. The proposed method determines the effect of the environment via extracting tree and building properties by using a classified 3D map and You Only Look Once (YOLO) V5, which is one of the most efficient deep learning algorithms. According to the results, the mean average precision (mAP) 0.5% and mAP 0.95% accuracies are obtained as 0.96 and 0.45, and image color classification (ICC) findings indicate 77.6% accuracy on vegetation detection, especially for tree canopies. Thus, the obtained results significantly improved signal strength prediction with a 3.96% Mean Absolute Percentage Error (MAPE) rate, while other empirical models’ prediction errors fall in the range of 6.07–15.26%.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3