Switching mode allocation in planning paths for vehicular network communication

Author:

Lu Dingzhu

Abstract

AbstractBecause of the increased mobility of vehicle users, it might be difficult to keep communication services in vehicle networks effective and dependable. Huge hurdles have been presented to vehicular networks as a result of the meteoric rise in the amount of data, which comes with the needs of high dependability and low latency. The deployment of access point servers at geographic locations that are closer to the vehicles in order to provide real-time service to applications that are based on the vehicles is one possible option. However, there is a limited amount of cache store space, and there is also a lack of a tractable access mode allocation method. As a result of these factors, it is very difficult to strike a compromise between the network transmission performance and fronthaul savings. Because the signal-to-interference-ratio (SIR) can be enhanced with switching mode in vehicular infrastructure, it may be possible to achieve higher levels of dependability. To serve all of the vehicles, the conventional allocation in vehicular network may not be sufficient on its own for two reasons: (1) the number of vehicles exceeds the number of paths, and (2) a vehicle may be located outside of the coverage path. Therefore, the implementation of switching mode allocation in vehicular communication is very necessary in order to increase the number of vehicles that can be supplied. In this paper, allocation using V2I, V2V, and V2X modes have been analyzed to provide dependable coverage for vehicles. These methods are used for communicating with other vehicles. In this paper, the numerical analysis has been performed such that SIR is optimized. In switching mode allocation, it has been shown that establishing a variable SIR threshold is helpful in achieving a path coverage that can be relied upon. It has been shown beyond a reasonable doubt that the coverage probability is likewise directly dependent on SIR thresholds. The theoretical analysis is verified, and it is confirmed that the suggested method is capable of achieving significant performance improvement in terms of coverage probability and data rate.

Funder

Open University of Guangdong,Research on Curriculum Reform and Practice of Network Interconnection Technology in the Context of High-performance Computing and IPv6

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3