Author:
Megahed Amany A.,Abdelhay Ehab H.,Abdelazim Mohamed,Soliman Heba Y. M.
Abstract
AbstractIn this paper, a compact two-port MIMO antenna array system is described. The antenna array spans the range from 27 to 40 GHz, whereas the impedance of the antenna element is matched at 50 Ω. The gain of the antenna element is between 5.5 and 8.5 dBi, and its radiation efficiency is between 65 and 90%. With high impedance matching for 5G MMW (Millimeter Wave), particularly at 28 GHz and 38 GHz, the 2-port antenna array operates in the frequency range of 27–40 GHz. The suggested MIMO array operates effectively with a gain of approximately 10 dBi and a radiation efficiency of approximately 95%. The antenna array's overall dimensions are a length of 55.27 mm, a width of 27.635 mm, and a depth of 1.6 mm with partial ground. A FR-4 substrate is used in the antenna's fabrication, greatly reducing the cost. In the antenna array, a decoupling surface is used between the antennas, with orthogonality being maintained between the ports to reduce mutual coupling. The results of the modelling show a reduction in the measured mutual coupling between array ports of less than − 35 dB. An envelope correlation coefficient (ECC) of less than 1 × 10–4 is preferable. Additionally, the channel loss capacity is less than 0.3 bits/s/Hz, the mean effective gain is approximately − 6 dB, and the total active reflection coefficient is upgraded to be less than − 30 dB. Moreover, a diversity gain of approximately 10 dB is achieved. The proposed construction was created using CST Microwave Studio 2019. When the antennas are constructed and tested, the experimental outcomes surpass those of the simulation. Each antenna element is 27.635 mm long, 27.635 mm wide, and 1.6 mm thick. Slots in the radiating circular patch antenna element could be used to improve the radiation characteristics across the intended bands. The parametric study specifies that the distance between the antenna elements should be 0.5 λ, where λ is the operational wavelength.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献