Smart node relocation (SNR) and connectivity restoration mechanism for wireless sensor networks

Author:

ul Hassan MahmoodORCID,Mahmood Khalid,Saeed Muhammad Kashif,Ali Shahzad,Zaman Safdar,Al Awady Amin,Saqib Muhammad

Abstract

AbstractNode failures are inevitable in wireless sensor networks (WSNs) because sensor nodes in WSNs are miniature and equipped with small and often irreplaceable batteries. Due to battery drainage, sensor nodes can fail at any instance. Moreover, WSNs operate in hostile environments and environmental factors may also contribute to nodes failure. Failure of nodes leads to disruption of inter-node connectivity and might also lead to network partitioning. Failure to communicate with each other and with the base station can compromise the basic operation of the sensor network. For restoration of connectivity, a robust recovery mechanism is required. The existing connectivity restoration mechanisms suffer from shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration. As a result, most of these mechanisms lead to the excessive mobility of nodes, which itself causes the utilization of excessive battery. In this work, we propose a novel technique called smart node relocation (SNR). SNR is capable of detecting and restoring the connectivity caused by either single or multiple node failures. For achieving energy efficiency, SNR relies on transmitting a lesser number of control packets. For achieving the goal of being coverage-aware, it tries to relocate only essential nodes while trying to restore connectivity. By performing extensive simulations, we prove that SNR outperforms the existing approaches concerning multiple performance metrics including but not limited to the total number of packets transmitted, total distance moved for connectivity restoration, the percentage reduction in field coverage.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3