Abstract
AbstractMachine learning is a branch of the field of artificial intelligence. Deep learning is a complex machine learning algorithm that has unique advantages in image recognition, speech recognition, natural language processing, and industrial process control. Deep learning has It is widely used in the field of wireless communication. Prediction of geological disasters (such as landslides) is currently a difficult problem. Because landslides are difficult to detect in the early stage, this paper proposes a GPS-based wireless communication continuous detection system and applies it to landslide deformation monitoring to achieve early treatment and prevention. This article introduces the GPS multi-antenna detection system based on deep learning wireless communication, and introduces the time series analysis method and its application. The test results show that the GPS multi-antenna detection system of the wireless communication network has great advantages in response time, with high accuracy and small error. The horizontal accuracy is controlled at 0–2 mm and the vertical accuracy is about 1 mm. The analysis method is simple and efficient, and can obtain good results for short-term deformation prediction.
Funder
the Guangxi University Young and Middle-aged Teachers ’Research Ability Improvement Project
Scientific Research Project of Guangxi Mechanical and Electrical Vocational and Technical College
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference19 articles.
1. C. Àlvarez, J. Díaz, J. Petit et al., High level communication functionalities for wireless sensor networks. Theor. Comput. Sci. 406(3), 240–247 (2016)
2. P. He, T. Fan, Distributed fault-tolerance consensus filtering in wireless sensor networks-Part I: communication failure. Int. J. Sens. Netw. 22(2), 127–142 (2016)
3. S. Randhawa, S. Jain, Energy-efficient load balancing scheme for two-tier communication in wireless sensor networks. J. Supercomput. 74(4), 1–31 (2017)
4. Y. Kwon, A. Kwasinski, A. Kwasinski, Coordinated energy management in resilient microgrids for wireless communication networks. IEEE J. Emerg. Sel. Top. Power Electron. 4(4), 1158–1173 (2016)
5. N. Wan, G.L. Kan, G.J. Wilson, Addressing location uncertainties in GPS-based activity monitoring: a methodological framework. Trans. GIS 21(4), 764 (2016)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献