Detection and performance analysis for MIMO visible light communication system using joint optical spatial and pulse amplitude width modulation

Author:

Wu Wei-ChiangORCID

Abstract

AbstractConventional optical spatial modulation (SM) scheme activates one of the light-emitting diodes (LEDs) to transmit an intensity-modulated optical signal, in which the index of the activated LED is determined by spatial symbol and the emitted intensity is controlled by temporal symbol. In order to enhance the spectral efficiency (bits per channel use), we propose a joint SM and pulse amplitude width modulation (PAWM) as a novel optical spatial–temporal signaling scheme. In this paper, the proposed SM-PAWM optical signaling scheme is applied in a multi-input multi-output (MIMO) visible light communication (VLC) system. Employing optimal maximum likelihood (ML) algorithm to extract the spatial and temporal symbols is computationally prohibitive; hence, we develop a novel low-complexity detection scheme that converts the joint optimization problem separately to decode the spatial and temporal symbols. Moreover, theoretical results in terms of the successful identification probability of activated LED as well as the overall symbol error rate are derived. Extensive computer simulations are performed to validate the analytical results. It is shown that the proposed detection scheme is a feasible alternative to the ML detector in the VLC-MIMO system employing SM-PAWM.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3