Research on energy-efficient routing algorithm based on SWIPT in multi-hop clustered WSN for 5G system

Author:

Han ShuORCID,Liu Xiao-ming,Huang Hong-yu,Wang Fei,Zhong Yuan-hong

Abstract

AbstractAs one of the basic supporting technologies of 5G system, wireless sensor networks technology is facing a new challenge to improve its transmission energy efficiency. This paper considers combining simultaneous wireless information and power transfer (SWIPT) technique and routing technique, and applying them to multi-hop clustered wireless sensor networks (MCWSN), where each node can decode information and harvest energy from a received radio-frequency signal. And the relay nodes in MCWSN can utilize the harvest energy to forward data to their next hop nodes according to the routing scheme. First, we formulate an energy-efficient routing problem of MCWSN with SWIPT. Then, a heuristic energy efficient cooperative SWIPT routing algorithm (EECSR) is presented to find a transmission path with the maximum energy efficiency. Specifically, in EECSR, the resource allocation problem in each hop of the path is transformed to some equivalent convex optimization problems, which are resolved via dual decomposition. Moreover, a distributed routing protocol based on EECSR is proposed. As far as we know, this is the first solution that considers energy efficiency optimization based on routing and SWIPT in MCWSN. Simulation results show that our EECSR algorithm has high energy efficiency and good robustness. And our distributed routing protocol has better real-time performance than traditional protocols.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3