Partially overlapped channel assignment for multi-channel multi-radio wireless mesh networks

Author:

Wang Jihong,Shi Wenxiao,Cui Keqiang,Jin Feng,Li Yuxin

Abstract

Abstract Partially overlapped channels (POCs)-based design has been identified recently as an emerging technology to further eliminate interference and improve network capacity. However, there are only few studies of channel assignment algorithms for POCs. In this paper, we research on utilizing POCs to improve network capacity and propose a traffic-irrelevant channel assignment algorithm, which assigns channels for all links in the network while minimizing total network interference. Theoretical calculation approach is utilized to obtain the direct relationship between interference ranges and channel separations, which can be easily applied to mesh networks with various configurations without modification. As traffic between the Internet and clients is considered to be dominant, distance from the gateway, number of neighbors, and interference are used to determine the channel assignment order of links. Simulation results reveal that network throughput and end-to-end delay performance can be dramatically improved by fully exploiting POCs as well as orthogonal channels.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cumulative analgesic effect of repeated electroacupuncture is modulated by Adora3 in the SCDH of mice with neuropathic pain;Animal Models and Experimental Medicine;2024-07-11

2. Optimization Algorithm for Efficient Channel Assignment and Performance Enhancement of Wireless Networks;SN Computer Science;2024-02-22

3. Channel Allocation Strategies in Multi-Radio Multi-Channel Wireless Mesh Networks;2023 International Conference on Next Generation Electronics (NEleX);2023-12-14

4. A Hierarchical Anti-Interference Channel Hopping Algorithm based on ZigBee Priority;2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS);2023-07-07

5. Channel Allocation for Wireless Mesh Networks based on Topology Control and Potential Game;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3