A new deep sparse autoencoder for community detection in complex networks

Author:

Fei Rong,Sha Jingyuan,Xu Qingzheng,Hu Bo,Wang Kan,Li Shasha

Abstract

AbstractFeature dimension reduction in the community detection is an important research topic in complex networks and has attracted many research efforts in recent years. However, most of existing algorithms developed for this purpose take advantage of classical mechanisms, which may be long experimental, time-consuming, and ineffective for complex networks. To this purpose, a novel deep sparse autoencoder for community detection, named DSACD, is proposed in this paper. In DSACD, a similarity matrix is constructed to reveal the indirect connections between nodes and a deep sparse automatic encoder based on unsupervised learning is designed to reduce the dimension and extract the feature structure of complex networks. During the process of back propagation, L-BFGS avoid the calculation of Hessian matrix which can increase the calculation speed. The performance of DSACD is validated on synthetic and real-world networks. Experimental results demonstrate the effectiveness of DSACD and the systematic comparisons with four algorithms confirm a significant improvement in terms of three index Fsame, NMI, and modularity Q. Finally, these achieved received signal strength indication (RSSI) data set can be aggregated into 64 correct communities, which further confirms its usability in indoor location systems.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel network core structure extraction algorithm utilized variational autoencoder for community detection;Expert Systems with Applications;2023-07

2. Community Discovery Algorithm Based on Improved Deep Sparse Autoencoder;Communications in Computer and Information Science;2023

3. Machine learning and deep learning methods for wireless network applications;EURASIP Journal on Wireless Communications and Networking;2022-11-29

4. Enabling the Community Detection with Graph Autoencoder using node features in the Social Networks;2022 Fifth College of Science International Conference of Recent Trends in Information Technology (CSCTIT);2022-11-15

5. A novel attributed community detection by integration of feature weighting and node centrality;Online Social Networks and Media;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3