Texture features-based lightweight passive multi-state crowd counting algorithm

Author:

Tian YongORCID,Li Ying,Li Jiaxin,Gao Fangting,Zhuang Chuanzhen,Ding Xuejun

Abstract

AbstractPassive crowd counting using channel state information (CSI) is a promising technology for applications in fields such as smart cities and commerce. However, the most existing algorithms can only recognize the total number of people in the monitoring area and cannot simultaneously recognize the number and states of people and ignore the real-time performance of the algorithms. Therefore, they cannot be applied to the scenarios of multi-state crowd counting requiring high real-time performance. To address this issue, a lightweight passive multi-state crowd counting algorithm called TF-LPMCC is proposed. This algorithm constructs CSI amplitude data into amplitude and time–frequency images, extracts texture features using the gray-level co-occurrence matrix (GLCM) and gray-level difference statistic (GLDS) methods, and uses the linear discriminant analysis (LDA) algorithm to count the crowd in multi-states. Experiments show that the TF-LPMCC algorithm not only has low time complexity but also achieves an average recognition accuracy of 98.27% for crowd counting.

Funder

National Natural Science Foundation of China

Humanities and Social Sciences Research Planning Foundation of the Ministry of Education of China

the Applied Basic Research Program Project of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3