Modified state activation functions of deep learning-based SC-FDMA channel equalization system

Author:

Mohamed Mohamed A.ORCID,Hassan Hassan A.,Essai Mohamed H.,Esmaiel Hamada,Mubarak Ahmed S.,Omer Osama A.

Abstract

AbstractThe most important function of the deep learning (DL) channel equalization and symbol detection systems is the ability to predict the user’s original transmitted data. Generally, the behavior and performance of the deep artificial neural networks (DANNs) rely on three main aspects: the network structure, the learning algorithms, and the activation functions (AFs) used in each node in the network. Long short-term memory (LSTM) recurrent neural networks have shown some success in channel equalization and symbol detection. The AFs used in the DANN play a significant role in how the learning algorithms converge. Our article shows how modifying the AFs used in the tanh units (block input and output) of the LSTM units can significantly boost the DL equalizer's performance. Additionally, the learning process of the DL model was optimized with the help of two distinct error-measuring functions: default (cross-entropy) and sum of squared error (SSE). The DL model's performance with different AFs is compared. This comparison is conducted using three distinct learning algorithms: Adam, RMSProp, and SGdm. The findings clearly demonstrate that the most frequently used AFs (sigmoid and hyperbolic tangent functions) do not really make a significant contribution to perfect network behaviors in channel equalization. On the other hand, there are a lot of non-common AFs that can outperform the frequently employed ones. Furthermore, the outcomes demonstrate that the recommended loss functions (SSE) exhibit superior performance in addressing the channel equalization challenge compared to the default loss functions (cross-entropy).

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3