Heuristic approaches for the car sequencing problems with block batches

Author:

Yu Yingjie,Lu Xiaochun,Zhao Tao,Cheng Minjiao,Liu Lin,Wei Wenchao

Abstract

AbstractMotivated by the practical supply chain management of the automobile industry, we study the car sequencing problem (CSP) that minimizes the conflicts occur when sequentially manufacturing cars on an assembly line. The CSP is a well-established problem, subject to the paint batching constraints to decrease the energy consumption for color changeovers and production rate constraints in the assembly shop to ensure a smooth usage of car options. However, the existing solution algorithms to this problem do not take into account the block batches, which desires a consecutive production batch of cars requiring a certain option. This requirement often occurs when specialized labor time window is short in the customized car production scenario, and renders additional complexities to the traditional car sequencing problem. In this paper, we present a novel model to deal with these constraints and simultaneously generate the sequencing and replenishment decisions. Besides, we develop two math-heuristic algorithms to solve the proposed large-scale CSP. The presented heuristics are on the basis of relax-and-fix procedures, fix-and-optimize procedures and adaptive variable neighborhood search. To solve the large-sized instances (commercial solvers, i.e., Cplex, cannot obtain a feasible result within 1 h), we design and implement a reinforced parameter tuning mechanism to dynamically select the parameter values, so as to speed up the search process. The proposed models and heuristics are tested on representative instances generated from the benchmark in the literature (CSPLib), as well as large-sized instances generated from real-world cases. We report on extensive computational experiments and provide basic managerial insights into the planning process.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Beijing Social Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3