Spatial attention and quantization-based contrastive learning framework for mmWave massive MIMO beam training

Author:

Jia Haohui,Chen Na,Urakami Taisei,Gao Hui,Okada Minoru

Abstract

AbstractDeep learning (DL)-based beam training schemes have been exploited to improve spectral efficiency with fast optimal beam selection for millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems. To achieve high prediction accuracy, these DL models rely on training with a tremendous amount of labeled environmental measurements, such as mmWave channel state information (CSI). However, demanding a large volume of ground truth labels for beam training is inefficient and infeasible due to the high labeling cost and the requirement for expertise in practical mmWave massive MIMO systems. Meanwhile, a complex environment incurs critical performance degradation in the continuous output of beam training. In this paper, we propose a novel contrastive learning framework, named self-enhanced quantized phase-based transformer network (SE-QPTNet), for reliable beam training with only a small fraction of the labeled CSI dataset. We first develop a quantized phase-based transformer network (QPTNet) with a hierarchical structure to explore the essential features from frequency and spatial views and quantize the environmental components with a latent beam codebook to achieve robust representation. Next, we design the SE-QPTNet including self-enhanced pre-training and supervised beam training. SE-QPTNet pre-trains by the contrastive information of the target user and others with the unlabeled CSI, and then, it is utilized as the initialization to fine-tune with a reduced volume of labeled CSI. Finally, the experimental results show that the proposed framework improves beam prediction accuracy and data rates with 5% labeled data compared to existing solutions. Our proposed framework further enhances flexibility and breaks the limitation of the quantity of label information for practical beam training.

Funder

Japan Society for the Promotion of Science

Hirose Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3