Using improved support vector regression to predict the transmitted energy consumption data by distributed wireless sensor network

Author:

Guo Ni,Gui Weifeng,Chen Wei,Tian Xin,Qiu Weiguo,Tian Zijian,Zhang Xiangyang

Abstract

AbstractMassive energy consumption data of buildings was generated with the development of information technology, and the real-time energy consumption data was transmitted to energy consumption monitoring system by the distributed wireless sensor network (WSN). Accurately predicting the energy consumption is of importance for energy manager to make advisable decision and achieve the energy conservation. In recent years, considerable attention has been gained on predicting energy use of buildings in China. More and more predictive models appeared in recent years, but it is still a hard work to construct an accurate model to predict the energy consumption due to the complexity of the influencing factors. In this paper, 40 weather factors were considered into the research as input variables, and the electricity of supermarket which was acquired by the energy monitoring system was taken as the target variable. With the aim to seek the optimal subset, three feature selection (FS) algorithms were involved in the study, respectively: stepwise, least angle regression (Lars), and Boruta algorithms. In addition, three machine learning methods that include random forest (RF) regression, gradient boosting regression (GBR), and support vector regression (SVR) algorithms were utilized in this paper and combined with three feature selection (FS) algorithms, totally are nine hybrid models aimed to explore an improved model to get a higher prediction performance. The results indicate that the FS algorithm Boruta has relatively better performance because it could work well both on RF and SVR algorithms, the machine learning method SVR could get higher accuracy on small dataset compared with the RF and GBR algorithms, and the hybrid model called SVR-Boruta was chosen to be the proposed model in this paper. What is more, four evaluate indicators were selected to verify the model performance respectively are the mean absolute error (MAE), the mean squared error(MSE), the root mean squared error (RMSE), and the R-squared (R2), and the experiment results further verified the superiority of the recommended methodology.

Funder

the National Natural Science Foundation of China

the National Natural Science Foundation of China and Shanxi Provincial People's Government Jointly Funded Project of China for Coal Base and Low Carbon

the Open Research Fund of Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Evaluation of ML Models for Per-Job Power Prediction;Companion of the 15th ACM/SPEC International Conference on Performance Engineering;2024-05-07

2. Predicting energy consumption of mosque buildings during the operation stage using deep learning approach;Energy and Buildings;2024-01

3. Data-Driven Tools for Building Energy Consumption Prediction: A Review;Energies;2023-03-09

4. Novel Improved Communication Steadiness Routing for Wireless Sensor Network's Performance Analysis compared with Network Boundary Maintenance Routing;2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF);2023-01-05

5. Machine learning approach to predict delay in smart infusion pump;Salud Ciencia y Tecnología;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3