Deep reinforcement learning-based beam training with energy and spectral efficiency maximisation for millimetre-wave channels

Author:

Narengerile ORCID,Thompson John,Patras Paul,Ratnarajah Tharmalingam

Abstract

AbstractThe millimetre-wave (mmWave) spectrum has been investigated for the fifth generation wireless system to provide greater bandwidths and faster data rates. The use of mmWave signals allows large-scale antenna arrays to concentrate the radiated power into narrow beams for directional transmission. The beam alignment at mmWave frequency bands requires periodic training because mmWave channels are sensitive to user mobility and environmental changes. To benefit from machine learning technologies that will be used to build the sixth generation (6G) communication systems, we propose a new beam training algorithm via deep reinforcement learning. The proposed algorithm can switch between different beam training techniques according to the changes in the wireless channel such that the overall beam training overhead is minimised while achieving good performance of energy efficiency or spectral efficiency. Further, we develop a beam training strategy which can maximise either energy efficiency or spectral efficiency by controlling the number of activated radio frequency chains based on the current channel conditions. Simulation results show that compared to baseline algorithms, the proposed approach can achieve higher energy efficiency or spectral efficiency with lower training overhead.

Funder

MathWorks

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference44 articles.

1. R.W. Heath, N. González-Prelcic, S. Rangan, W. Roh, A.M. Sayeed, An overview of signal processing techniques for millimeter wave MIMO systems. IEEE JSTSP 10(3), 436–453 (2016)

2. A. Alkhateeb, O. El Ayach, G. Leus, R.W. Heath, Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE JSTSP 8(5), 831–846 (2014)

3. S. Rangan, T.S. Rappaport, E. Erkip, Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)

4. I.K. Jain. Millimeter wave beam training: a survey. Preprint arXiv:1810.00077 (2018)

5. J. Saloranta, G. Destino, H. Wymeersch. Comparison of different beamtraining strategies from a rate-positioning trade-off perspective, in 2017 European Conference on Networks and Communications (EuCNC) (IEEE, 2017), pp. 1–5

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3