Directional modulation techniques for secure wireless communication: a comprehensive survey

Author:

Ansari OmarORCID,Amin Muhammad

Abstract

AbstractDirectional Modulation (DM) techniques provide wireless communication security against passive eavesdropping by means of specific physical layer characteristics. The original symbol constellations are transmitted along pre-specified spatial direction of legitimate users, while phase-amplitude distorted symbols are transmitted along the undesired directions of eavesdropper. In this paper, a comprehensive review of DM techniques and the most recent developments in this area are discussed. An analysis from three independent Physical Layer Security (PLS) viewpoints; communications, information-theoretic and cryptographic perspective is presented. Different performance metrics in literature are compared and the need for unified PLS approach is emphasized. As DM techniques constitute a relatively new class of PLS, there is no systematic organization of these techniques so far. This paper presents a classification framework for DM comprising of two main categories; angular (1D) and range-angular (2D) techniques. The former secures data along angular direction of physical space, while the latter provides security within certain range (distance) from the transmitter along desired angular direction. Further sub-categorization is based on the under-lying physical layer parameters exploited to achieve security, i.e. space, time, frequency, phase and polarization. The proposed framework is generic, flexible and extend-able to future research. In the end, limitations of existing techniques are pointed out and research directions are suggested.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Invariant and Localized Secure Reception With Sequential Multicarrier Receive-FDA;IEEE Transactions on Antennas and Propagation;2023-09

2. Cracking Physical Layer Artificial Noise Secure Transmission by Bit-flipping;2023 2nd International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3