Ambient backscatter communication-based smart 5G IoT network

Author:

Liu QiangORCID,Sun Songlin,Yuan Xueguang,Zhang Yang’an

Abstract

AbstractIn this paper, we propose an ambient backscatter communication-based smart 5G IoT network. The network consists of two parts, namely a real-time data transmission system based on ambient backscatter communication and a real-time big data analysis system based on the combination of shallow neural networks and deep neural networks. The real-time data transmission system based on ambient backscatter communication can extend the standby time of data collection equipment, reduce the size of the equipment, and increase the comfort of wearing. The real-time big data analysis system combining the shallow neural network and the deep neural network can greatly reduce the pressure caused by the frequent deep neural network calculations of the MEC and greatly reduce the energy consumed by the MEC for remote real-time monitoring.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference19 articles.

1. N. Javaid, A. Sher, H. Nasir, N. Guizani, Intelligence in IoT-based 5G networks: opportunities and challenges. IEEE Commun. Mag. 56(10), 94–100 (2018)

2. L. Guo, F. Chen, L. Chen, X. Tang, ‘The building of cloud computing environment for e-health,’ in: Proceedings of the IEEE International Conference on E-Health Networking, Digital Ecosystems and Technologies, (2010), pp. 89–92.

3. S. Lee, S. Lee, M. Shin, Low cost MEC server placement and association in 5G networks, in: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), (2019), pp. 879–882.

4. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR (2016).

5. G. Yang et al., A health-IoT platform based on the integration of intel- ligent packaging, unobtrusive bio-sensor, and Intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3