Facial image super-resolution guided by adaptive geometric features

Author:

Fan ZhenfengORCID,Hu Xiyuan,Chen Chen,Wang Xiaolian,Peng Silong

Abstract

AbstractThis paper addresses the traditional issue of restoring a high-resolution (HR) facial image from a low-resolution (LR) counterpart. Current state-of-the-art super-resolution (SR) methods commonly adopt the convolutional neural networks to learn a non-linear complex mapping between paired LR and HR images. They discriminate local patterns expressed by the neighboring pixels along the planar directions but ignore the intrinsic 3D proximity including the depth map. As a special case of general images, the face has limited geometric variations, which we believe that the relevant depth map can be learned and used to guide the face SR task. Motivated by it, we design a network including two branches: one for auxiliary depth map estimation and the other for the main SR task. Adaptive geometric features are further learned from the depth map and used to modulate the mid-level features of the SR branch. The whole network is implemented in an end-to-end trainable manner under the extra supervision of depth map. The supervisory depth map is either a paired one from RGB-D scans or a reconstructed one by a 3D prior model of faces. The experiments demonstrate the effectiveness of the proposed method and achieve improved performance over the state of the arts.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3