Abstract
AbstractThe study and the detection of possible network attacks are essential for wireless networks, in particular for mobile cognitive radio networks due to its characteristics such as the dynamic spectrum allocation and constant frequency hopping. The primary user emulation attack is one of the most significant attacks in cognitive radio, because it hazards the complete cognitive cycle. The techniques used for the detection of primary user emulation found in the literature are based on a fixed attacker location. However, in a mobile environment, the attacker usually has dynamic locations and this compromises the current applied security techniques and generates inefficient attack detection. Therefore, our work proposes a novel technique using cross-layer design for the detection of primary user emulation with mobility. This attack detection technique was tested with experiments using software-defined radio equipment and mobile phones at indoor scenarios with dynamic locations and with a mobile phone base station built up also with software-defined radio. The obtained results show that the combination of the three utilized techniques, energy detection, motion estimation, and application information analysis, are able to optimize the detection with around 100% of effectiveness for the primary user emulation attack with dynamic location. The proposed technique shows that the energy detection time is around 100 ms and for the processing time of the information analysis in the mobile phone is about 30 s. This result shows a practical and effective approach to detect primary emulation attacks. The proposed technique, to the best of the authors’ knowledge, has not been presented before in the literature with experiments neither with mobility conditions of the attacker as presented in our proposed work.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference50 articles.
1. J. Mitola, Software radios: Survey, critical evaluation and future directions, IEEE Aerosp. Electron. Syst. Mag. 8, 25 (1993). pp. 25-36.
2. L. F. Pedraza, A. Molina, and I. Páez, Spectrum occupancy statistics in Bogota-Colombia. Paper presented at IEEE Colombian Conference on Communications and Computing. COLCOM (2013), Medellín, Colombia. 22-24 Mayo 2013. pp. 1-6. https://doi.org/10.1109/ColComCon.2013.6564815.
3. L. F. P. Martínez, F. Forero, and I. P. Páez, Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia. Vol. 10 (2014). pp. 127–143.
4. L. Pedraza, C. Hernandez, K. Galeano, E. Rodríguez, and I. Páez, Ocupación espectral y modelo de radio cognitiva para Bogotá, (Univ. Dist. Francisco José Caldas, 2016).
5. W. R. Ghanem, R. Essam, and M. Dessouky, Paper presented at 2018 35th Natl. Radio Sci. Conf. NRSC (IEEE, 2018), pp. 309–318. https://doi.org/10.1109/NRSC.2018.8354378.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献