Abstract
AbstractIn the white paper written on Bitcoin, a chain of blocks was proposed by Satoshi Nakamoto. Since then, blockchain has been rapidly developed. Blockchain is not only limited to the field of cryptocurrency but also has been extensively applied to the Internet of Things, supply chain finance, electronic evidence storage, data sharing, and e-government fields. Both the public chain and the alliance chain have been extensively developed. In the data processing field, blockchain has a particularly good application potential. The Square Kilometre Array (SKA) is a proposal consisting of a joint venture of more than ten countries, resulting in the world’s largest synthetic aperture radio telescope. In the SKA, the processing scale of the data is large, and it consists of several data processing nodes. The data will be processed in the cloud computing mode. Taking the SKA under consideration, this report proposes a data processing scheme based on blockchain for the anti-counterfeiting, anti-tampering and traceability of data. Furthermore, the authenticity and integrity of the data are assured. The primary aspects include data distribution, data operation and data sharing, which correspond to the data reception, data algorithm processing and result sharing of data operation in the SKA. With this process, the integrity, reliability and authenticity of the data are guaranteed. Additionally, smart contracts, homomorphic hashing, secure containers, aggregate signatures and one-way encrypted channels are implemented to ensure the intelligence, security and high performance of the process.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
National Key Scientific Instrument and Equipment Development Projects of China
National Scientific Fund Programme for Young Scholar
Science and Technology Department of Henan Province
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference32 articles.
1. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Consulted (2008)
2. M. Padmavathi, R.M. Suresh, Secure P2P intelligent network transaction using litecoin. Mob. Netw. Appl. 24, 318–326 (2018)
3. N. van Saberhagen, Cryptonote v 2.0. HYPERLINK (2013), https://cryptonote.org/whitepaper.pdf
4. E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: Decentralized anonymous payments from bitcoin, in IEEE Symposium on Security and Privacy (SP) (IEEE, 2014), pp. 459–474
5. X. Xu, X. Zhang, H. Gao, Y. Xue, L. Qi, W. Dou, BeCome: blockchain-enabled computation offloading for IoT in mobile edge computing. IEEE Trans. Ind. Inform. (2019). https://doi.org/10.1109/TII.2019.2936869
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献