Energy-efficient offloading and resource allocation for mobile edge computing enabled mission-critical internet-of-things systems

Author:

Fu YaruORCID,Yang Xiaolong,Yang Peng,Wong Angus K. Y.,Shi Zheng,Wang Hong,Quek Tony Q. S.

Abstract

AbstractThe energy cost minimization for mission-critical internet-of-things (IoT) in mobile edge computing (MEC) system is investigated in this work. Therein, short data packets are transmitted between the IoT devices and the access points (APs) to reduce transmission latency and prolong the battery life of the IoT devices. The effects of short-packet transmission on the radio resource allocation is explicitly revealed. We mathematically formulate the energy cost minimization problem as a mixed-integer non-linear programming (MINLP) problem, which is difficult to solve in an optimal way. More specifically, the difficulty is essentially derived from the coupling of the binary offloading variables and the resource management among all the IoT devices. For analytical tractability, we decouple the mixed-integer and non-convex optimization problem into two sub-problems, namely, the task offloading decision-making and the resource optimization problems, respectively. It is proved that the resource allocation problem for IoT devices under the fixed offloading strategy is convex. On this basis, an iterative algorithm is designed, whose performance is comparable to the best solution for exhaustive search, and aims to jointly optimize the offloading strategy and resource allocation. Simulation results verify the convergence performance and energy-saving function of the designed joint optimization algorithm. Compared with the extensive baselines under comprehensive parameter settings, the algorithm has better energy-saving effects.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference27 articles.

1. C. Li, F. Sun, J.M. Cioffi, L. Yang, Energy efficient mimo relay transmissions via joint power allocations. IEEE Trans. Circuits Syst. 61(7), 531–535 (2014)

2. C. Li, J. Wang, F.-C. Zheng, J.M. Cioffi, L. Yang, Overhearing-based co-operation for two-cell network with asymmetric uplink–downlink traffics. IEEE Trans. Signal Inf. Process. Netw. 2(3), 350–361 (2016)

3. Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge computing: a key technology towards 5G. European Telecommunications Standards Institute (ETSI) White Paper (2015)

4. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017). (Fourthquarter)

5. N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3