Emergency demand response in edge computing

Author:

Song Zhaoyan,Zhou Ruiting,Zhao Shihan,Qin Shixin,Lui John C.S.,Li Zongpeng

Abstract

AbstractA cloudlet is a small-scale cloud datacenter deployed at the network edge to support mobile applications in proximity with low latency. While an individual cloudlet operates on moderate power, cloudlet clusters are well-suited candidates for emergency demand response (EDR) scenarios due to substantial electricity consumption and job elasticity: mobile workloads in the edge often exhibit elasticity in their execution. To efficiently carry out edge EDR via cloudlet cluster control, two fundamental problems need to be addressed: how to incentivize the participation of cloudlet clusters and how to schedule and allocate workloads in each cluster to satisfy EDR requirements. We propose a two-stage control scheme, consisting of (i) an auction mechanism to motivate clusters’ voluntary energy reduction and select participants with the minimum social cost and (ii) an online task scheduling algorithm for chosen clusters to dispatch workloads to guarantee target EDR power reduction. Using the primal-dual optimization theory, we prove that our control scheme is truthful, individually rational, runs in polynomial time, and achieves near-optimal performance. Large-scale simulation studies based on real-world data also confirm the efficiency and superiority of our scheme over state-of-the-art algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Intellectual Diffused Configuration for High-Level Edge Network Elasticity;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12

2. Six-factors Score-based Match-making Based on Priority and Preemption for Resource Allocation in Edge Computing;2021 IEEE International Conference on Edge Computing (EDGE);2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3