Time series behavior modeling with digital twin for Internet of Vehicles

Author:

Zhang Tianle,Liu Xiangtao,Luo Zongwei,Dong Fuqiang,Jiang YuORCID

Abstract

AbstractElectric vehicle (EV) is considered eco-friendly with low carbon emission and maintenance costs. Given the current battery and charging technology, driving experience of EVs relies heavily on the availability and reachability of EV charging infrastructure. As the number of charging piles increases, carefully designed arrangement of resources and efficient utilization of the infrastructure is essential to the future development of EV industry. The mobility and distribution of EVs determine the charging demand and the load of power distribution grid. Then, dynamic traffic pattern of numerous interconnected EVs poses great impact on charging plans and charging infrastructure.In this paper, we introduce the digital twin of a real-world EV by modeling the mobility based on a time series behaviors of EVs to evaluate the charging algorithm and pile arrangement policy. The introduced digital twin EV is a virtually simulated equivalence with same traffic behaviors and charging activities as the EV in real world. The behavior and route choice of EVs is dynamically simulated base on the time-varying driving operations, travel intent, and charging plan in a simulated large-scale charging scenario composed of concurrently moving EVs and correspondingly equipped charging piles. Different EV navigation algorithms and charging algorithms of Internet of Vehicle can be exactly evaluated in the dynamic simulation of the digital twins of the moving EVs and charging infrastructure. Then we analyze the collected data such as energy consumption, charging capacity, charging frequency, and waiting time in queue on both the EV side and the charging pile side to evaluate the charging efficiency. The simulation is used to study the relations between the scheduled charging operation of EVs and the deployment of piles. The proposed model helps evaluate and validate the design of the charging recommendation and the deployment plan regarding to the arrangement and distribution of charging piles.

Funder

the Guangdong Province Key Research and Development Plan

the National Natural Science Foundation of China

the National Key research and Development Plan

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin based Internet of Vehicles;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

2. Toward Transportation Digital Twin Systems for Traffic Safety and Mobility: A Review;IEEE Internet of Things Journal;2024-07-15

3. A New Layer Structure of Cyber-Physical Systems under the Era of Digital Twin;ACM Transactions on Internet Technology;2024-06-29

4. Digital Twins along the product lifecycle: A systematic literature review of applications in manufacturing;Digital Twin;2024-03-08

5. Temporal Dynamics of Citizen-Reported Urban Challenges: A Comprehensive Time Series Analysis;Big Data and Cognitive Computing;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3