Design of a reservoir for cloud-enabled echo state network with high clustering coefficient

Author:

Akrami Abbas,Rostami Habib,Khosravi Mohammad R.

Abstract

AbstractReservoir computing (RC) is considered as a suitable alternative for descending gradient methods in recursive neural networks (RNNs) training. The echo state network (ESN) is a platform for RC and nonlinear system simulation in the cloud environment with many external users. In the past researches, the highest eigenvalue of reservoir connection weight (spectral radius) was used to predict reservoir dynamics. Some researchers have illustrated; the characteristics of scale-free and small-world can improve the approximation capability in echo state networks; however, recent studies have shown importance of the infrastructures such as clusters and the stability criteria of these reservoirs as altered. In this research, we suggest a high clustered ESN called HCESN that its internal neurons are interconnected in form of clusters. Each of the clusters contains one backbone and a number of local nodes. We implemented a classical clustering algorithm, called K-means, and three optimization algorithms including genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) to improve the clustering efficiency of the new reservoir and compared them with each other. For investigating the spectral radius and predictive power of the resulting reservoirs, we also applied them to the laser time series and the Mackey-Glass dynamical system. It is demonstrated that new clustered reservoirs have some specifications of biologic neural systems and complex networks like average short path length, high clustering coefficient, and power-law distribution. The empirical results illustrated that the ESN based on PSO could strikingly enhance echo state property (ESP) and obtains less chaotic time series prediction error compared with other works and the original version of ESN. Therefore, it can approximate nonlinear dynamical systems and predict the chaotic time series.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3