Device association and trajectory planning for UAV-assisted MEC in IoT: a matching theory-based approach

Author:

Zhang Xinjun,Zhang GuopengORCID,Wang Kezhi,Yang Kun

Abstract

AbstractUnmanned aircraft vehicles (UAVs)-enabled mobile edge computing (MEC) can enable Internet of Things devices (IoTD) to offload computing tasks to them. Considering this, we study how multiple aerial service providers (ASPs) compete with each other to provide edge computing services to multiple ground network operators (GNOs). An ASP owning multiple UAVs aims to achieve the maximum profit from providing MEC service to the GNOs, while a GNO operating multiple IoTDs aims to seek the computing service of a certain ASP to meet its performance requirements. To this end, we first quantify the conflicting interests of the ASPs and GNOs by using different profit functions. Then, the UAV scheduling and resource allocation is formulated as a multi-objective optimization problem. To address this problem, we first solve the UAV trajectory planning and resource allocation problem between one ASP and one GNO by using the Lagrange relaxation and successive convex optimization (SCA) methods. Based on the obtained results, the GNOs and ASPs are then associated in the framework based on the matching theory, which results in a weak Pareto optimality. Simulation results show that the proposed method achieves the considerable performance.

Funder

National Natural Science Foundation of China

Quzhou Government

Sichuan Major Research and Development Project

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3