Abstract
AbstractUnmanned aircraft vehicles (UAVs)-enabled mobile edge computing (MEC) can enable Internet of Things devices (IoTD) to offload computing tasks to them. Considering this, we study how multiple aerial service providers (ASPs) compete with each other to provide edge computing services to multiple ground network operators (GNOs). An ASP owning multiple UAVs aims to achieve the maximum profit from providing MEC service to the GNOs, while a GNO operating multiple IoTDs aims to seek the computing service of a certain ASP to meet its performance requirements. To this end, we first quantify the conflicting interests of the ASPs and GNOs by using different profit functions. Then, the UAV scheduling and resource allocation is formulated as a multi-objective optimization problem. To address this problem, we first solve the UAV trajectory planning and resource allocation problem between one ASP and one GNO by using the Lagrange relaxation and successive convex optimization (SCA) methods. Based on the obtained results, the GNOs and ASPs are then associated in the framework based on the matching theory, which results in a weak Pareto optimality. Simulation results show that the proposed method achieves the considerable performance.
Funder
National Natural Science Foundation of China
Quzhou Government
Sichuan Major Research and Development Project
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献