Research on the construction and simulation of PO-Dijkstra algorithm model in parallel network of multicore platform

Author:

Zhang Bo,Hu De Ji

Abstract

AbstractThe development of multicore hardware has provided many new development opportunities for many application software algorithms. Especially, the algorithm with large calculation volume has gained a lot of room for improvement. Through the research and analysis, this paper has presented a parallel PO-Dijkstra algorithm for multicore platform which has split and parallelized the classical Dijkstra algorithm by the multi-threaded programming tool OpenMP. Experiments have shown that the speed of PO-Dijkstra algorithm has been significantly improved. According to the number of nodes, the completion time can be increased by 20–40%. Based on the improved heterogeneous dual-core simulator, the Dijkstra algorithm in Mi Bench is divided into tasks. For the G.72 encoding process, the number of running cycles using “by function” is 34% less than using “divided by data,” while the power consumption is only 83% of the latter in the same situation. Using “divide by data” will reduce the cost and management difficulty of real-time temperature. Using “divide by function” is a good choice for streaming media data. For the Dijkstra algorithm, the data is data without correlation, so using a simpler partitioning method according to the data partitioning can achieve good results. Through the simulation results and the analysis of the results of real-time power consumption, we conclude that for data such as strong data correlation of streaming media types, using “divide by function” will have better performance results; for data types where data correlation is not very strong, the effect of using “divide by data” is even better.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retraction Note: Research on the construction and simulation of PO-Dijkstra algorithm model in parallel network of multicore platform;EURASIP Journal on Wireless Communications and Networking;2022-12-13

2. Computer-based Simulation Data Model for Employment of Business Management Talents in Colleges: Python Implementations;2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT);2022-01-20

3. Penetration Planning and Design Method of Unmanned Aerial Vehicle Inspired by Biological Swarm Intelligence Algorithm;Wireless Communications and Mobile Computing;2021-12-31

4. Multi-objective path planning method of cross-sea drone logistics based on A* algorithm;2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST);2021-12-10

5. Simulation of traffic light disruptions in street networks;Physica A: Statistical Mechanics and its Applications;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3