Abstract
AbstractMobile ad hoc network (MANET) is an infrastructure-less, self-motivated, arbitrary, self-configuring, rapidly changing, multi-hop network that is self-possessing wireless bandwidth-conscious links without centrally managed router support. In such a network, wireless media is easy to snoop. It is firm to the surety to access any node, easier to insertion of bad elements or attackers for malicious activities in the network. Therefore, security issues become one of the significant considerations for such kind of networks. The deployment of an effective intrusion detection system is important in order to provide protection against various attacks. In this paper, a Digitally Signed Secure Acknowledgement Method (DSSAM) with the use of the RSA digital signature has been proposed and simulated. Three different parameters are considered, namely secure acknowledgment, node authentication, and packet authentication for study. This article observes the DSSAM performance and compares it with two existing standard methods, namely Watchdog and 2-ACK under standard Dynamic Source Routing (DSR) routing environment. In the end, it is noticed that the rate of detection of malicious behaviour is better in the case of the proposed method. However, associated overheads are high. A trade-off between performance and overhead has been considered.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference48 articles.
1. Internet Engineering Task Force, MANET Working Group Charter, Available from: IETF MANET Group Character Sector (2013). https://tools.ietf.org/html/draft-ietf-manet-term [Last Access: 13 January 2020].
2. B. Wu, J. Chen, J. Wu, M. Cardei, A survey of attacks and countermeasures in MANET, in Wireless Network Security, Signals and Communication Technology, Springer, Boston, MA, 103–135 (2007). https://doi.org/10.1007/978-0-387-33112-6_5
3. S. Tanwar, J. Vora, S. Tyagi, N. Kumar, M.S. Obaidat, A systematic review on security issues in vehicular ad hoc network. Secur Privacy 1, 5 (2018)
4. J. Singh, K. Singh, Congestion control in vehicular ad hoc network: a review. Next-Gener Netw 2018, 489–496 (2018)
5. K. Kumar, S. Kumar, O. Kaiwartya, P.K. Kashyap, J. Lloret, H. Song, Drone assisted flying ad-hoc networks: mobility and service-oriented modeling using neuro-fuzzy. Ad Hoc Netw. 106, 102242 (2020)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献