Shaping duo binary turbo-coded BICM scheme for JPWL image transmission using a link adaptation strategy over wireless channels

Author:

Hadji AhmedORCID,Bouazza Boubakar S.,Boeglen Hervé,Perrine Clency,Nouri Keltouma,Chatellier Christian,Pousset Yannis

Abstract

AbstractIn order to guarantee a robust transmission of JPWL (JPEG Wireless: Joint Photographic Experts Group Wireless) images through time and frequency selective wireless channels, an efficient adaptive communication strategy is proposed. It is based on an optimization of a closed-loop adaptive multiple-input multiple-output, orthogonal frequency division multiplexing (MIMO-OFDM) scheme associated with a shaping BICM (bit-interleaved coded modulation) technique composed of a duo binary turbo code (DBTC), high-order modulations such as 64–256 QAM (Quadrature Amplitude Modulation) and a shaping code. According to the CSI (channel state information) knowledge at the transmitter side, an algorithm based on unequal error protection (UEP) and unequal power allocation (UPA) is used to select the transmitter key parameters (source/channel encoder rate, modulation order, power, number of quality layers and number of iterations of the Turbo decoder) to achieve the target Quality of Service (QoS). The proposed DBTC-shaping BICM scheme reaches a shaping gain of 1.2 dB for a 256 QAM modulation over a SISO Gaussian channel, whereas only 0.7 dB of shaping gain can be achieved in a scheme that uses the LDPC shaping BICM scheme for the same modulation order. Based on a DBTC shaping BICM scheme and an adaptive algorithm, the proposed MIMO-OFDM strategy achieves better performance compared to a strategy using an iterative process between an RS (Reed-Solomon) and arithmetic decoders. As a result, and on the one hand, a gain of 5.38 dB can be achieved in terms of PSNR (peak signal-to-noise ratio). On the other hand, a gain of 78% in terms of power consumption is obtained for the same QoS level. Moreover, the adaptive number of iterations in the proposed strategy can minimize the computational complexity of the turbo decoding compared to a scheme using four iterations whatever the channel conditions.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference38 articles.

1. ISO/IEC 15444-1 / ITU-T T.800, JPEG 2000 Image Coding System: Core Coding System (2002)

2. ISO/IEC 15444-11:2007, JPEG 2000 Image Coding System–part11: Wireless JPEG 2000 (2007)

3. N. Thomos, N.V.Boulgouris, M.G.Strintzis, Optimized transmission of JPEG 2000 streams over wireless channels, IEEE Transactions on Image Processing 15, 54–67, 2006.

4. L. Atzori, Transmission of JPEG2000 images over wireless channels with unequal power distribution, IEEE Transactions on Consumer Electronics 49 (11), 883–888, 2003.

5. Y. Zhang, X.Li and H.Yang, Unequal Error Protection in Image Transmission Based on LDPC Codes, International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 9, No. 3, pp. 1–10, 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3