A reinforcement learning-based sleep scheduling algorithm for compressive data gathering in wireless sensor networks

Author:

Wang Xun,Chen Hongbin,Li ShichaoORCID

Abstract

AbstractCompressive data gathering (CDG) is an adequate method to reduce the amount of data transmission, thereby decreasing energy expenditure for wireless sensor networks (WSNs). Sleep scheduling integrated with CDG can further promote energy efficiency. Most of existing sleep scheduling methods for CDG were formulated as centralized optimization problems which introduced many extra control message exchanges. Meanwhile, a few distributed methods usually adopted stochastic decision which could not adapt to variance in residual energy of nodes. A part of nodes were prone to prematurely run out of energy. In this paper, a reinforcement learning-based sleep scheduling algorithm for CDG (RLSSA-CDG) is proposed. Active nodes selection is modeled as a finite Markov decision process. The mode-free Q learning algorithm is used to search optimal decision strategies. Residual energy of nodes and sampling uniformity are considered into the reward function of the Q learning algorithm for load balance of energy consumption and accurate data reconstruction. It is a distributed algorithm that avoids large amounts of control message exchanges. Each node takes part in one step of the decision process. Thus, computation overhead for sensor nodes is affordable. Simulation experiments are carried out on the MATLAB platform to validate the effectiveness of the proposed RLSSA-CDG against the distributed random sleep scheduling algorithm for CDG (DSSA-CDG) and the original sparse-CDG algorithm without sleep scheduling. The simulation results indicate that the proposed RLSSA-CDG outperforms the two contrast algorithms in terms of energy consumption, network lifetime, and data recovery accuracy. The proposed RLSSA-CDG reduces energy consumption by 4.64% and 42.42%, respectively, compared to the DSSA-CDG and the original sparse-CDG, prolongs life span by 57.3%, and promotes data recovery accuracy by 84.7% compared to the DSSA-CDG.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3