Distributed ranking-based resource allocation for sporadic M2M communication

Author:

Chang YunyanORCID,Jung Peter,Zhou Chan,Stańczak S.ławomir

Abstract

AbstractThis work proposes a novel scheme for distributed ranking-based and contention-free resource allocation in large-scale machine-to-machine (M2M) communication networks. We partition a network of N devices into disjoint clusters based on service type, and assign to each cluster a cluster-specific signature for active cluster members to indicate their active status. The devices in each cluster are totally ordered in some a priori-known manner, which gives rise to an active ranking of active cluster members. In order to tackle complexity issues in large-scale M2M networks with a massive number of devices, we propose a distributed resource allocation scheme using the framework of compressed sensing (CS), which mainly consists of three phases: (i) In a full-duplex acquisition phase, the devices transmit their cluster-specific signatures simultaneously and the network activation pattern is collected in a distributed manner. (ii) The base station detects the active clusters and the number of active devices per cluster using block sketching, and allocates resources to each active cluster accordingly. (iii) Each active device determines its active ranking in the cluster and accesses a specific resource according to the ranking position. By exploiting the sparsity in the activation pattern of the M2M devices, the proposed scheme is formulated as a CS support recovery problem for a particular binary block-sparse signal $$x\in {\mathbb{B}}^N$$ x B N – with block sparsity $$K_{B}$$ K B and in-block sparsity $$K_{I}$$ K I over block size d. Our analysis shows that the proposed scheme efficiently reduces the signature length to $$\mathcal {O}(\max \{K_{B}\log N, K_{B}K_{I}\log d\})$$ O ( max { K B log N , K B K I log d } ) and achieves less computational complexity of $$\mathcal {O}(dK_{I}^{2}+\frac{N}{d}\log N)$$ O ( d K I 2 + N d log N ) compared with standard CS algorithms. Moreover, numerical results suggest strong robustness of the proposed scheme under noisy conditions.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3