A type of energy-efficient secure localization algorithm FM based in dynamic sensor networks

Author:

Xue Wei-cheng,Peng Bao,Wang Shan-he,Hua Yu

Abstract

AbstractSince dynamic wireless sensor networks are widely used in the military field, the location information is the basis of various applications, because each node in the dynamic sensor network is moving continuously, and it is quite possible to be attacked by various forms of information. Aiming at the problem of secure localization in dynamic sensor networks, a new secure localization algorithm—frequency modulation secure localization (FMSL)—for dynamic sensor networks is proposed with the support of FM signal and Monte Carlo method. The algorithm uses FM signals which are widely covered to locate randomly distributed nodes loaded with FM signal receiving module, filters some malicious attack anchors in the network, and uses the improved Monte Carlo algorithm to locate the nodes, so as to improve the positioning accuracy. Meanwhile, according to the moving path and the localization time, energy consumption of the network could be estimated and also give the sleep scheduling strategy for the node to be localized. The simulation results show that the FMSL algorithm can significantly improve the security performance and positioning accuracy of mobile sensor networks compared with the existing security positioning algorithms such as Monte Carlo and convex programming. In the process of motion, the positioning accuracy can reach less than 10%.

Funder

Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme

shenzhen science and technology innovation committee

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3