Abstract
AbstractCellular networks based on new generation standards are the major enabler for Internet of things (IoT) communication. Narrowband-IoT and Long Term Evolution for Machines are the newest wide area network-based cellular technologies for IoT applications. The deployment of unmanned aerial vehicles (UAVs) has gained the popularity in cellular networks by using temporary ubiquitous coverage in the areas where the infrastructure-based networks are either not available or have vanished due to some disasters. The major challenge in such networks is the efficient UAVs deployment that covers maximum users and area with the minimum number of UAVs. The performance and sustainability of UAVs is largely dependent upon the available residual energy especially in mission planning. Although energy harvesting techniques and efficient storage units are available, but these have their own constraints and the limited onboard energy still severely hinders the practical realization of UAVs. This paper employs neglected parameters of UAVs energy consumption in order to get actual status of available energy and proposed a solution that more accurately estimates the UAVs operational airtime. The proposed model is evaluated in test bed and simulation environment where the results show the consideration of such explicit usage parameters achieves significant improvement in airtime estimation.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献