Evaluation of energy consumption of LPWAN technologies

Author:

Rajab HusamORCID,Al-Amaireh Husam,Bouguera Taoufik,Cinkler Tibor

Abstract

AbstractThe majority of IoT implementations demand sensor nodes to run reliably for an extended time. Furthermore, the radio settings can endure a high data rate transmission while optimizing the energy-efficiency. The LoRa/LoRaWAN is one of the primary low-power wide area network (LPWAN) technologies that has highly enticed much concentration. The energy limits is a significant issue in wireless sensor networks since battery lifetime that supplies sensor nodes have a restricted amount of energy and neither expendable nor rechargeable in most cases. A common hypothesis is that the energy consumed by sensors in sleep mode is negligible. With this hypothesis, the usual approach is to consider subsets of nodes that reach all the iterative targets. These subsets also called coverage sets, are then put in the active mode, considering the others are in the low-power or sleep mode. In this paper, we address this question by proposing an energy consumption model based on LoRa and LoRaWAN, which optimizes the energy consumption of the sensor node for different tasks for a period of time. Our energy consumption model assumes the following, the processing unit is in on-state along the working sequence which enhances the MCU unit by constructing it in low-power modes through most of the activity cycle, a constant time duration, and the radio module sends a packet of data at a specified transmission power level. The proposed analytical approach permits considering the consumed power of every sensor node element where the numerical results show that the scenario in which the sensor node transfers data to the gateway then receives an acknowledgment RX2 without receiving RX1 consumes the most energy; furthermore, it can be used to analyze different LoRaWAN modes to determine the most desirable sensor node design to reach its energy autonomy where the numerical results detail the impact of scenario, spreading factor, and bandwidth on power consumption.

Funder

National Research, Development and Innovation Office

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3