Abstract
AbstractThe distribution of the received signals in many array processing applications is noncircular. Although optimal widely linear beamformer (WLB) can provide the best performance for noncircular received signals, its performance degrades severely under model mismatches in practical applications. As a remedy, we propose a robust WLB by using precise reconstruction of extended interference-plus-noise covariance matrix (EINCM) and low-complexity estimation of extended desired signal steering vector (EDSSV). We propose to first determine the steering vectors, powers, and noncircularity coefficients of all signals and the noise power. In contrast to the previous reconstruction methods using the integration over a wide angular sector, we reconstruct the interference-plus-noise covariance matrix (INCM) and the pseudo INCM accurately according to their definitions. By using INCM and pseudo INCM, we can precisely reconstruct the EINCM. We propose to estimate the EDSSV by intersecting two extended subspaces, which are respectively formed by eigendecomposing the extended sample covariance matrix and the extended desired signal covariance matrix. Unlike the convex optimization methods, the proposed EDSSV estimation does not require any optimization programming and yields a solution with closed expression in low computational complexity. Simulation results show that the proposed robust WLB provides near optimal performance under several model mismatch cases.
Funder
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献