Blockchain managed federated learning for a secure IoT framework

Author:

Chai Jiayong,Li Jian,Wei Muhua,Zhu Chuangying

Abstract

AbstractIn this work, we present a blockchain-based federated learning (FL) framework that aims achieving high system efficiency while simultaneously addressing issues relating to data sparsity and the disclosure of private information. It is more efficient to build a number of smaller clusters rather than one big cluster for multiple networks. Blockchain-based FL is carried out in each cluster, with the model changes being compiled at the end of the process. Following that, the accumulated updates are swapped across the clusters, which, in practise, improves the updates that are accessible for each cluster. When compared to the extensive interactions that take place in blockchain-based FL, cluster-based FL only sends a limited number of aggregated updates across a substantial distance. This is in contrast to the extensive interactions that take place in blockchain-based FL. In order to conduct an analysis of our system, we have implemented the prototypes of both cluster and blockchain-based FL models. The findings of the experiments show that cluster-based FL model raise the accuracy goes upto 72.6%, and goes down to 11%. The loss goes upto 3.6 and goes down to 0.8. In addition, cluster-based FL model has the potential to hasten the convergence of the model, provided that the same quantity of data is input into it. The reason for this is due to the fact that during a training cycle, cluster-based FL model combines the computational resources of many different clusters.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retraction Note: Blockchain managed federated learning for a secure IoT framework;EURASIP Journal on Wireless Communications and Networking;2024-05-13

2. Identifying key players in dark web marketplaces through Bitcoin transaction networks;Scientific Reports;2024-01-29

3. Dizzy: Large-Scale Crawling and Analysis of Onion Services;Proceedings of the 18th International Conference on Availability, Reliability and Security;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3