Joint scatterer localization and material identification using radio access technology

Author:

Geng YiORCID,Shrestha Deep,Yajnanarayana Vijaya,Dahlman Erik,Behravan Ali

Abstract

AbstractCellular network technologies and radar sensing technologies have been developing in parallel for decades. Instead of developing two individual technologies, the 6G cellular network is expected to naturally support both communication and radar functionalities with shared hardware and carrier frequencies. In this regard, radio access technology (RAT)-based scatterer localization system is one of the important aspects of joint communication and sensing system that uses communication signals between transceivers to determine the location of scatterers in and around the propagation paths. In this article, we first identify the challenges of the RAT-based scatterer localization system and then present single- and multiple-bounce reflection loss simulation results for three common building materials in indoor environments. We also propose two novel methods to jointly localize and identify the type of the scatterers in a rich scattering environment.

Funder

H2020 project Hexa-X

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3