Abstract
AbstractIn the next generation of mobile communication networks, unprecedented challenges are required to be met, such as much higher data rates and spectrum efficiency, lower latency, and massive connectivity. Non-orthogonal multiple access (NOMA) has recently been proposed as a promising technology to achieve much superior spectral efficiency compared to conventional orthogonal multiple access techniques employed in present communication systems. A salient feature of NOMA is its use of successive interference cancellation (SIC) to decode users’ information when multiple users are allowed to transmit in same time/frequency/code domain. In this paper, we aim to exploit an aspect of SIC, namely the availability of other users’ data to realize a cooperative NOMA system. EXtrinsic information transfer (EXIT) charts are utilized to examine the performance of proposed system in terms of user fairness while employing IRregular convolutional codes (IRCC)s. The EXIT chart using IRCC evaluates the convergence analysis for the proposed system. Further, to evaluate the system performances in cooperative NOMA system, we have derived the expressions for the achievable rates which are obtained independently and utilized them in evaluating the experimental data for the proposed NOMA model.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference45 articles.
1. C.B. Papadias, T. Ratnarajah, D.T.M. Slock (eds.), Spectrum Sharing: The Next Frontier in Wireless Networks (Wiley, New York, 2020)
2. G.K. Papageorgiou, K. Voulgaris, K. Ntougias, D.K. Ntaikos, M.M. Butt, C. Galiotto, N. Marchetti, V. Frascolla, H. Annouar, A. Gomes, A.J. Morgado, M. Pesavento, T. Ratnarajah, K. Gopala, F. Kaltenberger, D.T.M. Slock, F.A. Khan, C.B. Papadias, Advanced dynamic spectrum 5G mobile networks employing licensed shared access. IEEE Commun. Mag. 58(7), 21–27 (2020)
3. A. Gupta, R.K. Jha, A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)
4. M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655 (2016)
5. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献