Enhanced adaptive code modulation for rainfall fade mitigation in Ethiopia

Author:

Woldamanuel Eyob MershaORCID,Diba Feyisa Debo

Abstract

AbstractRain attenuation is considerably noticed in a frequency spectrum above 7-GHz for tropical equatorial regions and in a frequency spectrum higher than 10-GHz for temperate climates. The attenuation prediction method provided by the International Telecommunication Union-Recommendation (ITU-R), through Recommendation P.530-16 and P.618-13 utilize data collected from temperate regions. Since the average raindrop size is bigger and the rainfall rate is high in magnitude in tropical regions than that of non-tropical areas, this prediction model is not suitable for the measured rain data. Unfortunately, a rain fade mitigation technique based on local rain data has not been adequately studied in tropical regions. This paper presents an enhanced adaptive code modulation (ACM) for rainfall fade mitigation in Ethiopia. In this research work, locally collected one-minute rain rate data is used to determine the rain attenuation. Then based on this result, the neuro-fuzzy inference system is employed to enhance the mitigation technique. Furthermore, a comparison of the performance of this proposed scheme is with the non-adaptive technique, and fuzzy-based adaptive modulation and coding technique is carried out. MATLAB simulation result showed that lower-order quadrature amplitude modulation (QAM) scheme with a lower convolutional coding rate is better in maintaining link availability in bad weather conditions. However, spectral efficiency is improved by utilizing a larger constellation size of quadrature amplitude modulation (QAM) scheme with a higher convolutional coding rate when the channel is not affected by rain.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference34 articles.

1. R.L. Freeman, Radio System Design for Telecommunications, 3rd edn. (Wiley, Hoboken, 2006)

2. H. Sizun, Radio Wave Propagation for Telecommunication Applications (Springer, Paris, 2003)

3. R.K. Crane, Propagation Handbook for Wireless Communication System Design (CRC Press, Boca Raton, 2003)

4. F.D. Diba, Radio Wave Propagation Modeling under Precipitation and Clear-air at Microwave and Millimetric Bands over Wireless Links in the Horn of Africa, PhD, Electronic Engineering, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (2017)

5. R.M. Islam, Y.A. Abdulrahman, T.A. Rahman, An improved ITU-R rain attenuation prediction model over terrestrial microwave links in tropical region. EURASIP J. Wirel. Commun. Netw. 2012(1), 189 (2012)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3