Analysis of river bed variation using SSARR and RMA-2 models

Author:

Hwang Ju HaORCID,Maeng Seung Jin,Kim Hyung San,Lee Seung Wook

Abstract

AbstractFuture changes in river bed were predicted under the assumption that flow velocity of past and changes in flow rate at upstream river due to construction of large-scale artificial structures downstream occur in the future. Therefore, the long-term runoff volume from the downstream part of Hosan Stream was estimated using the SSARR (Stream Synthesis and Reservoir Regulation Model). Changes in the river bed were simulated using RMA-2 and SED-2D, which are hydraulic models. As a result, it was found that the river bed variation is significantly affected by the inclusion of sediment in flood flow at upstream. A comprehensive evaluation of above results revealed that the river width has significantly affected flow rate, and the inclusion of sediment in flood flow from the upstream has a huge effect on changes in the riverbed. In this regard, there is a need to devise measures to mitigate future flood damage to artificial structures by reflecting sedimentation trends downstream before the construction of large-scale artificial structures at downstream of river.

Publisher

Springer Science and Business Media LLC

Reference19 articles.

1. Ariathurai R, Krone RB (1976) Finite element model for cohesive sediment transport. J Hydraul Div 102(3):323–338

2. Duan JG, Julien PY (2010) Numerical simulation of meandering evolution. J Hydrol 391(issues 1-2):34–46

3. Environmental Modeling Research Laboratory (2003) SMS (Surface Water Modeling System) Tutorials Version 8.1, Brigham Young University.

4. Han KY, Cho HJ, Son KI, Kim KS (1993) Analysis of the flood level variation through bridges. J Kor Assoc Hydrol Sci 26(4):35–46 (in Korean)

5. Hongwei F, Minghong C, Qianhai C (2008) One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows. Int J Sed Res 23(4):316–328

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3