Cell-type-specific translational control of spatial working memory by the cap-binding protein 4EHP

Author:

Wiebe Shane,Huang Ziying,Ladak Reese Jalal,Skalecka Agnieszka,Cagnetta Roberta,Lacaille Jean-Claude,Aguilar-Valles Argel,Sonenberg Nahum

Abstract

AbstractThe consolidation of learned information into long-lasting memories requires the strengthening of synaptic connections through de novo protein synthesis. Translation initiation factors play a cardinal role in gating the production of new proteins thereby regulating memory formation. Both positive and negative regulators of translation play a critical role in learning and memory consolidation. The eukaryotic initiation factor 4E (eIF4E) homologous protein (4EHP, encoded by the gene Eif4e2) is a pivotal negative regulator of translation but its role in learning and memory is unknown. To address this gap in knowledge, we generated excitatory (glutamatergic: CaMKIIα-positive) and inhibitory (GABAergic: GAD65-positive) conditional knockout mice for 4EHP, which were analyzed in various behavioral memory tasks. Knockout of 4EHP in Camk2a-expressing neurons (4EHP-cKOexc) did not impact long-term memory in either contextual fear conditioning or Morris water maze tasks. Similarly, long-term contextual fear memory was not altered in Gad2-directed 4EHP knockout mice (4EHP-cKOinh). However, when subjected to a short-term T-maze working memory task, both mouse models exhibited impaired cognition. We therefore tested the hypothesis that de novo protein synthesis plays a direct role in working memory. We discovered that phosphorylation of ribosomal protein S6, a measure of mTORC1 activity, is dramatically reduced in the CA1 hippocampus of 4EHP-cKOexc mice. Consistently, genetic reduction of mTORC1 activity in either excitatory or inhibitory neurons was sufficient to impair working memory. Taken together, these findings indicate that translational control by 4EHP and mTORC1 in both excitatory and inhibitory neurons are necessary for working memory.

Funder

Canadian Institutes of Health Research

Howard Hughes Medical Institute Distinguished Researcher

Brain Canada/FNC

Richard Tomlinson Doctoral Fellowship

CIHR project grant

FRQS Research Center grant

Canada Research Chair in Cellular and Molecular Neurophysiology

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3