Pathophysiology of and therapeutic options for a GABRA1 variant linked to epileptic encephalopathy

Author:

Bai Yun-Fei,Chiu Michelle,Chan Elizabeth S.,Axerio-Cilies Peter,Lu Jie,Huh Linda,Connolly Mary B.,Guella Ilaria,Farrer Matthew J.,Xu Zhi-Qing David,Liu Lidong,Demos Michelle,Wang Yu Tian

Abstract

Abstract We report the identification of a de novo GABRA1 (R214C) variant in a child with epileptic encephalopathy (EE), describe its functional characterization and pathophysiology, and evaluate its potential therapeutic options. The GABRA1 (R214C) variant was identified using whole exome sequencing, and the pathogenic effect of this mutation was investigated by comparing wild-type (WT) α1 and R214C α1 GABAA receptor-expressing HEK cells. GABA-evoked currents in these cells were recorded using whole-cell, outside-out macro-patch and cell-attached single-channel patch-clamp recordings. Changes to surface and total protein expression levels of WT α1 and R214C α1 were quantified using surface biotinylation assay and western blotting, respectively. Finally, potential therapeutic options were explored by determining the effects of modulators, including diazepam, insulin, and verapamil, on channel gating and receptor trafficking of WT and R214C GABAA receptors. We found that the GABRA1 (R214C) variant decreased whole-cell GABA-evoked currents by reducing single channel open time and both surface and total GABAA receptor expression levels. The GABA-evoked currents in R214C GABAA receptors could only be partially restored with benzodiazepine (diazepam) and insulin. However, verapamil treatment for 24 h fully restored the function of R214C mutant receptors, primarily by increasing channel open time. We conclude that the GABRA1 (R214C) variant reduces channel activity and surface expression of mutant receptors, thereby contributing to the pathogenesis of genetic EE. The functional restoration by verapamil suggests that it is a potentially new therapeutic option for patients with the R214C variant and highlights the value of precision medicine in the treatment of genetic EEs.

Funder

CIHR foundation grant

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3