Globus pallidus is not independent from striatal direct pathway neurons: an up-to-date review

Author:

Fujiyama FuminoORCID,Karube FuyukiORCID,Hirai Yasuharu

Abstract

AbstractStriatal projection neurons, which are classified into two groups—direct and indirect pathway neurons, play a pivotal role in our understanding of the brain’s functionality. Conventional models propose that these two pathways operate independently and have contrasting functions, akin to an “accelerator” and “brake” in a vehicle. This analogy further elucidates how the depletion of dopamine neurons in Parkinson's disease can result in bradykinesia. However, the question arises: are these direct and indirect pathways truly autonomous? Despite being distinct types of neurons, their interdependence cannot be overlooked. Single-neuron tracing studies employing membrane-targeting signals have shown that the majority of direct pathway neurons terminate not only in the output nuclei, but also in the external segment of the globus pallidus (GP in rodents), a relay nucleus of the indirect pathway. Recent studies have unveiled the existence of arkypallidal neurons, which project solely to the striatum, in addition to prototypic neurons. This raises the question of which type of GP neurons receive these striatal axon collaterals. Our morphological and electrophysiological experiments showed that the striatal direct pathway neurons may affect prototypic neurons via the action of substance P on neurokinin-1 receptors. Conversely, another research group has reported that direct pathway neurons inhibit arkypallidal neurons via GABA. Regardless of the neurotransmitter involved, it can be concluded that the GP is not entirely independent of direct pathway neurons. This review article underscores the intricate interplay between different neuronal pathways and challenges the traditional understanding of their independence.

Funder

Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) for Scientific Research

Japan Research Promotion Society for Cardiovascular Diseases

Scientific Researches on Innovative Areas “Adaptation Circuit Census”

Human Frontier Scientific Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3