Characterization of a pathogenic variant in GBA for Parkinson’s disease with mild cognitive impairment patients

Author:

Jiang Zhiqiang,Huang Yilin,Zhang Piao,Han Chongyin,Lu Yueer,Mo Zongchao,Zhang Zhanyu,Li Xin,Zhao Sisi,Cai Fuqiang,Huang Lizhen,Chen Chunbo,Shi Zhihong,Zhang Yuhu,Ling Fei

Abstract

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disease, and mild cognitive impairment (MCI) is a well-established risk factor for the development of dementia in PD. A growing body of evidence suggests that low expression of glucocerebrosidase (GBA) promotes the transmission of α-synuclein (α-Syn) interpolymers and the progression of PD. However, how GBA mutations affect the pathogenesis of PD via abnormal aggregation of α-Syn is unclear, and no clinically valid PD-MCI genetic markers have been identified. Here, we first located a GBA eQTL, rs12411216, by analysing DHS, eQTL SNP, and transcription factor binding site data using the UCSC database. Subsequently, we found that rs12411216 was significantly associated with PD-MCI (P < 0.05) in 306 PD patients by genotyping. In exploring the relationship between rs12411216 and GBA expression, the SNP was found to be associated with GBA expression in 50 PD patients through qPCR verification. In a further CRISPR/Cas9-mediated genome editing module, the SNP was identified to cause a decrease in GBA expression, weaken enzymatic activity and enhance the abnormal aggregation of α-Syn in SH-SY5Y cells. Additionally, using an electrophoretic mobility shift assay, we confirmed that the binding efficiency of transcription factor E2F4 was affected by the rs12411216 SNP. In conclusion, our results showed that rs12411216 regulated GBA expression, supporting its potential role as a PD-MCI genetic biomarker and highlighting novel mechanisms underlying Parkinson’s disease.

Funder

the 2019 Major Projects from the Education Department of Guangdong Province

Guangdong Provincial Science and Technology Plan Project

Guangdong Provincial Natural Science Foundation – Project

Key Program of Natural Science Foundation of Guangdong Province, China

Guangzhou Municipal People’s Livelihood Science and Technology Project

Tianjin Science and Technology Project

Undergraduate Innovation Fund of South China University of Technology

High-level Hospital Construction Project

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3