Fibroblasts from idiopathic Parkinson’s disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2

Author:

Thomas Ria,Moloney Elizabeth B.,Macbain Zachary K.,Hallett Penelope J.,Isacson Ole

Abstract

AbstractLysosomal dysfunction is a central pathway associated with Parkinson’s disease (PD) pathogenesis. Haploinsufficiency of the lysosomal hydrolase GBA (encoding glucocerebrosidase (GCase)) is one of the largest genetic risk factors for developing PD. Deficiencies in the activity of the GCase enzyme have been observed in human tissues from both genetic (harboring mutations in the GBA gene) and idiopathic forms of the disease. To understand the mechanisms behind the deficits of lysosomal GCase enzyme activity in idiopathic PD, this study utilized a large cohort of fibroblast cells from control subjects and PD patients with and without mutations in the GBA gene (N370S mutation) (control, n = 15; idiopathic PD, n = 31; PD with GBA N370S mutation, n = 6). The current data demonstrates that idiopathic PD fibroblasts devoid of any mutations in the GBA gene also exhibit reduction in lysosomal GCase activity, similar to those with the GBA N370S mutation. This reduced GCase enzyme activity in idiopathic PD cells was accompanied by decreased expression of the GBA trafficking receptor, LIMP2, and increased ER retention of the GBA protein in these cells. Importantly, in idiopathic PD fibroblasts LIMP2 protein levels correlated significantly with GCase activity, which was not the case in control subjects or in genetic PD GBA N370S cells. In conclusion, idiopathic PD fibroblasts have decreased GCase activity primarily driven by altered LIMP2-mediated transport of GBA to lysosome and the reduced GCase activity exhibited by  the genetic GBA N370S derived PD fibroblasts occurs through a different mechanism.

Funder

National Institute of Neurological Disorders and Stroke

NIH/NIA

DoD

The Orchard Foundation

The Harold and Ronna Cooper Family

The Consolidated Anti-Aging Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3