Author:
Lee Yong-Seok,Bailey Craig H,Kandel Eric R,Kaang Bong-Kiun
Abstract
Abstract
Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the c yclic AMP r esponse e lement b inding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different stimulation paradigms.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Molecular Biology
Reference73 articles.
1. Milner B, Squire LR, Kandel ER: Cognitive neuroscience and the study of memory. Neuron. 1998, 20 (3): 445-468. 10.1016/S0896-6273(00)80987-3.
2. Bailey CH, Bartsch D, Kandel ER: Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A. 1996, 93 (24): 13445-13452. 10.1073/pnas.93.24.13445.
3. Kandel ER: Behavioral biology of Aplysia : a contribution to the comparative study of opisthobranch molluscs /Eric R. Kandel. 1979, San Francisco , W. H. Freeman, xiii, 463 p.-
4. Kandel ER: Cellular basis of behavior. A series of books in psychology. 1976, New York , W.H. Freeman and company
5. Castellucci VF, Frost WN, Goelet P, Montarolo PG, Schacher S, Morgan JA, Blumenfeld H, Kandel ER: Cell and molecular analysis of long-term sensitization in Aplysia. J Physiol (Paris). 1986, 81 (4): 349-357.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献