Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs

Author:

Shoemaker Jason E,Fukuyama Satoshi,Eisfeld Amie J,Muramoto Yukiko,Watanabe Shinji,Watanabe Tokiko,Matsuoka Yukiko,Kitano Hiroaki,Kawaoka Yoshihiro

Abstract

Abstract Background Annually, influenza A viruses circulate the world causing wide-spread sickness, economic loss, and death. One way to better defend against influenza virus-induced disease may be to develop novel host-based therapies, targeted at mitigating viral pathogenesis through the management of virus-dysregulated host functions. However, mechanisms that govern aberrant host responses to influenza virus infection remain incompletely understood. We previously showed that the pandemic H1N1 virus influenza A/California/04/2009 (H1N1; CA04) has enhanced pathogenicity in the lungs of cynomolgus macaques relative to a seasonal influenza virus isolate (A/Kawasaki/UTK-4/2009 (H1N1; KUTK4)). Results Here, we used microarrays to identify host gene sequences that were highly differentially expressed (DE) in CA04-infected macaque lungs, and we employed a novel strategy – combining functional and pathway enrichment analyses, transcription factor binding site enrichment analysis and protein-protein interaction data – to create a CA04 differentially regulated host response network. This network describes enhanced viral RNA sensing, immune cell signaling and cell cycle arrest in CA04-infected lungs, and highlights a novel, putative role for the MYC-associated zinc finger (MAZ) transcription factor in regulating these processes. Conclusions Our findings suggest that the enhanced pathology is the result of a prolonged immune response, despite successful virus clearance. Most interesting, we identify a mechanism which normally suppresses immune cell signaling and inflammation is ineffective in the pH1N1 virus infection; a dyregulatory event also associated with arthritis. This dysregulation offers several opportunities for developing strain-independent, immunomodulatory therapies to protect against future pandemics.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Reference49 articles.

1. CDC: Outbreak of swine-origin influenza A (H1N1) virus infection - Mexico, March-April 2009. MMWR Morb Mortal Wkly Rep. 2009, 58 (17): 467-470.

2. World Health Organization (WHO): Disease Outbreak News: Pandemic (H1N1) 2009 - update 110. 2009, Geneva, Switzerland: World Health Organization (WHO), [http://www.who.int/csr/don/2010_07_23a/en/index.html]

3. Taubenberger JK, Morens DM: The pathology of influenza virus infections. Annu Rev Pathol. 2008, 3: 499-522. 10.1146/annurev.pathmechdis.3.121806.154316.

4. Rowe T, Leon AJ, Crevar CJ, Carter DM, Xu L, Ran L, Fang Y, Cameron CM, Cameron MJ, Banner D, et al.: Modeling host responses in ferrets during A/California/07/2009 influenza infection. Virology. 2010, 401 (2): 257-265. 10.1016/j.virol.2010.02.020.

5. Trilla A, Trilla G, Daer C: The 1918 “Spanish flu” in Spain. Clin Infect Dis. 2008, 47 (5): 668-673. 10.1086/590567.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3