Author:
Chavali Arvind K,Blazier Anna S,Tlaxca Jose L,Jensen Paul A,Pearson Richard D,Papin Jason A
Abstract
Abstract
Background
Systems biology holds promise as a new approach to drug target identification and drug discovery against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the application of selection criteria for both Leishmania major targets (e.g. in silico gene lethality) and drugs (e.g. toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-approved drugs is introduced.
Results
This metabolic network-driven approach identified 15 L. major genes as high-priority targets, 8 high-priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed noticeable antileishmanial activity when experimentally evaluated in vitro against L. major promastigotes. Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For proof-of-concept, double-drug combinations were evaluated in vitro against L. major and four combinations involving the drug disulfiram that showed superadditivity are presented.
Conclusions
A direct metabolic network-driven method that incorporates single gene essentiality and synthetic lethality predictions is proposed that generates a set of high-priority L. major targets, which are in turn associated with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery against leishmaniasis.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Reference54 articles.
1. Hotez PJ, Fenwick A, Savioli L, Molyneux DH: Rescuing the bottom billion through control of neglected tropical diseases. Lancet. 2009, 373 (9674): 1570-1575. 10.1016/S0140-6736(09)60233-6.
2. Hotez PJ: Mass drug administration and integrated control for the world's high-prevalence neglected tropical diseases. Clin Pharmacol Ther. 2009, 85 (6): 659-664. 10.1038/clpt.2009.16.
3. Desjeux P: Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004, 27 (5): 305-318. 10.1016/j.cimid.2004.03.004.
4. Croft SL, Coombs GH: Leishmaniasis-current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003, 19 (11): 502-508. 10.1016/j.pt.2003.09.008.
5. Molyneux D, Killick-Kendrick R: Morphology, ultrastructure and life cycles. The Leishmaniases in Biology and Medicine. Edited by: Peters W, Killick-Kendrick R. 1987, London: Academic Press Inc, 1: 121-176.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献