Information propagation within the Genetic Network of Saccharomyces cerevisiae

Author:

Chowdhury Sharif,Lloyd-Price Jason,Smolander Olli-Pekka,Baici Wayne CV,Hughes Timothy R,Yli-Harja Olli,Chua Gordon,Ribeiro Andre S

Abstract

Abstract Background A gene network's capacity to process information, so as to bind past events to future actions, depends on its structure and logic. From previous and new microarray measurements in Saccharomyces cerevisiae following gene deletions and overexpressions, we identify a core gene regulatory network (GRN) of functional interactions between 328 genes and the transfer functions of each gene. Inferred connections are verified by gene enrichment. Results We find that this core network has a generalized clustering coefficient that is much higher than chance. The inferred Boolean transfer functions have a mean p-bias of 0.41, and thus similar amounts of activation and repression interactions. However, the distribution of p-biases differs significantly from what is expected by chance that, along with the high mean connectivity, is found to cause the core GRN of S. cerevisiae's to have an overall sensitivity similar to critical Boolean networks. In agreement, we find that the amount of information propagated between nodes in finite time series is much higher in the inferred core GRN of S. cerevisiae than what is expected by chance. Conclusions We suggest that S. cerevisiae is likely to have evolved a core GRN with enhanced information propagation among its genes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3